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The retarded potential of a non-homogeneous wave equation: introductory
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The retarded potential, a solution of the non-homogeneous wave equation, is a subject of particular interest in many physics and engineering
applications. Examples of such applications may be the problem of solving the wave equation involved in the emission and reception of a
signal in a synthetic aperture radar (SAR), scattering and backscattering, and general electrodynamics for media free of magnetic charges.
However, the construction of this potential solution is based on the theory of distributions, a topic that requires special care and time to be
understood with mathematical rigor. Thus, the goal of this study is to provide an introductory analysis, with a medium level of formalism,
on the construction of this potential solution and the handling of Green functions represented by sequences of well-behaved approximating
functions.
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1. Introduction

Potential theory can be simply understood as the art of
solving a linear distributional non-homogeneous differential
equation through the Green functions [1–3]. In the context
of this study, our interest resides in the construction of an
integral solution that derives from the divergence Gauss the-
orem, certain Green identities, and the handling of the Green
functions. In the construction of this potential solution we
also find other results of great importance, such as the inte-
gral theorem of Helmholtz and Kirchhoff, which is the main
result that supports the scalar diffraction theory in optics [4].
However, Green functions are not properly functions in the
usual sense, since they are formally defined asdistributions.
Distributional theory, Green functions, and the use of Green
identities have been successfully implemented in many theo-
retical and applied works,e.g., SAR theory [5–7], scattering
and wave propagation [8–12], wave diffraction and electro-
dynamics [13–16], phase unwrapping [17–20], etc.

The concept of distribution is not easy to explain and in
most of the references where distributions are mentioned,
such as basic courses in calculus [21], differential equa-
tions [22], linear systems [23], or Fourier analysis [24], a
detailed explanation of such abstractions is not usually given.
Hence, in order to have a more solid notion of the concept
of distributions, orgeneralized functions, specialized litera-
ture should be consulted. This literature is specifically re-
lated to a coarse field of mathematics called functional anal-
ysis [25, 26] and some notions on Lebesgue measure [27].
Certainly, in this work we will not provide specific and de-
tailed information about distributions. Instead of that, we are

going to use the artifice of working with sequences of well-
behaved approximating functions [28], which permit us to
talk about distributions concisely and without too much com-
plexity. However, we hope to motivate the reader in the study
of distributions through one of their most important appli-
cations: the standard solution of the non-homogeneous wave
equation, also known as the retarded potential. To understand
the construction of this integral solution, we first need to ex-
pose the main problem involved with the non-homogeneous
wave equation. Thus, in order to establish the context of such
a problem, we start in Sec. 2 with a typical deduction of the
non-homogeneous wave equation from the Maxwell equa-
tions. Motivated in the perspective of SAR theory, in the sub-
sequent sections, we provide some descriptive guidelines for
constructing the potential solution of this non-homogeneous
wave equation. The potential solution is supported by the di-
vergence Gauss theorem and the Green identities, described
in Sec. 3. Of course, the definition of Green functions is also
explained in Sec. 4, where we discuss about certain incon-
gruities when working with Green functions, found in certain
references (for example [21]). These incongruities refer to
the question: How can be demonstrated that a function is
a Green function with some of formalism? We emphasize
that we do not want to criticize the descriptive style of refer-
ences [21–23] or [24], which are indeed quite advisable. We
simply want to point out that the treatment of distributions
should be made with more care. Additionally to this discus-
sion, a description of the integral theorem of Helmholtz and
Kirchhoff, and its relation with the retarded potential is pre-
sented in Sec. 5. Finally, Sec. 6 outlines our conclusions.
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2. Derivation of the non-homogeneous wave
equation

It is well known that, an electromagnetic wave, such as
a radar wave, is characterized in each point of the space
x̂ = (x, y, z), and each timet, by the vectorial functions
E = E(t, x̂), theelectric field(EF), andH = H(t, x̂), the
magnetic field(MF). When assuming as known the variables
J = J(t, x̂), thecurrent density(vectorial field),σ = σ(t, x̂),
the charge density(scalar function),q, thepermittivity con-
stant, andp, the permeabilityconstant, the fieldsE andH
can be found. These fields are determined by theMaxwell
equations: ∇ · E = σ/q, the Gauss law for EF,∇ ·H = 0,
the Gauss law for MF,∇×E + p(∂H/∂t) = 0̂, the Faraday
law, and∇ × H − q(∂E/∂t) = J , the Amp̀ere law. Here,
∇ := (∂/∂x, ∂/∂y, ∂/∂z), 0̂ = (0, 0, 0), and the media is
assumed free of magnetics sources. In this case, operations
∇ · F and∇ × F refer, respectively, to thedivergenceand
the rotational of any vectorial fieldF = F (t, x̂). Hence, a
method to findE andH can be constructed from the previous
Maxwell equations and the next theorems:
Theorem 1: Let F : R3 → R3 be a real valued vectorial
field of classC1 (continuous function with continuous first
order partial derivatives), exceptionally in a finite number of
points. Then,F is the gradient of some scalar functionf (that
is, F = ∇f ), if and only if∇× F = 0̂.
Theorem 2: If F : R3 → R3 is a C1-vectorial field such
that∇ ·F = 0, then, there is aC1-vectorial fieldG such that
F = ∇×G.

These theorems are demonstrated in [21] for real valued
functions dependent on variablêx (whereF = F (x̂)), how-
ever, they can be generalized to complex valued functions of
the formF : R3 → C3. Moreover, these theorems are in-
dependent of variablet, so, they are also true for complex
fields [29] of the formF : R4 → C3 whereF = F (t, x̂).
Now, by assumingE andH asC2-fields (that means,C1-
fields with continuous second order partial derivatives), from
the Gauss law for MF, and Theorem 2, there exists a fieldA0

such that
H = ∇×A0. (1)

Additionally, from Faraday law and Eq. (1), we have that

0̂ = ∇× E + p
∂

∂t
(∇×A0)

...

= ∇×
(

E + p
∂A0

∂t

)
,

(2)

which, from Theorem 1, implies the existence of a function
µ0 satisfying

E + p
∂A0

∂t
= ∇µ0. (3)

On the other hand, from the Ampère law, Eqs.(1) and (3), and
the vectorial identity∇× (∇× A0) = ∇(∇ · A0) −∇2A0

(where∇2 := (∂2/∂x2)+(∂2/∂y2)+(∂2/∂z2) is the Lapla-
cian operator), it follows that

J = ∇×H − q
∂E

∂t

= ∇× (∇×A0)− q
∂

∂t

(
∇µ0 − p

∂A0

∂t

)

= ∇(∇ ·A0)−∇2A0 − q
∂

∂t
(∇µ0) + pq

∂2A0

∂t2
. (4)

From the previous relation, it is obtained that

∇2A0 − pq
∂2A0

∂t2
= −J +∇(∇ ·A0)− q

∂

∂t
(∇µ0)

= −J +∇(∇ ·A0)−∇
(

q
∂µ0

∂t

)

= −J +∇
(
∇ ·A0 − q

∂µ0

∂t

)
. (5)

Now, by using the Gauss law for EF and Eq. (3), we get

∇2µ0 =
σ

q
+ p

∂

∂t
(∇ ·A0). (6)

Let us definef as a scalar solution of the equation

∇2f − pq
∂2f

∂t2
= −

(
∇ ·A0 − q

∂µ0

∂t

)
, (7)

and µ, as the functionµ := p(∂f/∂t) + µ0. From these
definitions we obtain the relation

∂f

∂t
=

(µ− µ0)
p

. (8)

Thus, it can be noticed that

H = ∇×A, (9)

with A = A0 +∇f . The result in Eq. (9) is logical because
∇ × (∇f) = 0̂ for all differentiable scalar fieldf ; in other
words,∇ × A = ∇ × A0 for suchA. SinceH can be cal-
culated, as suggested in Eq. (9), there is a functionµ1 that
satisfies

E + p
∂A

∂t
= ∇µ1, (10)

in analogy to the steps given for deriving Eq. (3). However,
∇µ = ∇µ1 due to the fact that

∇µ1 = E + p
∂

∂t
(A0 +∇f)

=
(

E + p
∂A0

∂t

)
+ p

∂

∂t
(∇f)

= ∇µ0 + p∇
(

∂f

∂t

)
= ∇µ, (11)

a consequence of Eqs. (3), (8), and (10). In this case, we can
replace∇µ1 by∇µ in Eq. (10) in order to obtain

E + p
∂A

∂t
= ∇µ. (12)
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Thus, by using Eqs. (9) and (12), thisA must satisfy

∇2A− pq
∂2A

∂t2
= −J +∇

(
∇ ·A− q

∂µ

∂t

)
(13)

and
∇2µ =

σ

q
+ p

∂

∂t
(∇ ·A), (14)

in analogy to the steps for concluding Eqs. (5) and (6) from
Eqs. (1) and (3). However, we have now a simplification in
our calculations because

∇ ·A− q
∂µ

∂t
= 0, (15)

as the reader can confirm.
Since Eq. (15) takes place, then Eq. (13) reduces to

∇2A− pq
∂2A

∂t2
= −J. (16)

In a similar fashion, from Eq. (15), the expression in Eq. (14)
is rewritten as

∇2µ− pq
∂2µ

∂t2
=

σ

q
. (17)

Therefore, by considering thewave propagation velocity
c0 := 1/

√
pq (as defined in [30]), and introducing the func-

tion ζ := −σ/q, Eqs. (16) and (17) are correspondingly ex-
pressed as

1
c2
0

∂2A

∂t2
−∇2A = J, (18a)

1
c2
0

∂2µ

∂t2
−∇2µ = ζ. (18b)

Then, when assumingJ andζ as known functions, the so-
lutions of Eqs. (18) forA andµ, permit us to findH and
E, from Eqs. (9) and (12), respectively. Equation (18) for
µ, and analogously forA, is known as thenon-homogeneous
wave equation, or d’Alembert equation[5] in the distribu-
tional sense. Due to its undulatory nature, the solution of this
equation is calledscalar wavein the case ofµ, or vectorial
wave, in the case ofA.

3. The Helmholtz equation, the divergence
Gauss theorem, and the Green identities

For constructing a solution of the non-homogeneous wave
equation, from the methods applied for solving differential
equations [22,31,32], it is typically proposed a general solu-
tion of the formµ = µ0 + µ1, whereµ0 is solution of the
homogeneous version of the wave equation (whenζ = 0),
and µ1 is solution of the original non-homogeneous equa-
tion (whenζ 6= 0). In radar language [33–35], functionζ is
interpreted as the source or the electric pulse emitted by an
antenna. In this context, whenζ 6= 0, it is understood that
the pulse induces a propagating wave which reaches an ob-
ject. This wave is known asemittingor incident fieldand it

is denoted byµ1. In opposite form, the object, assumed to
be like a non-emitting electric pulse source (ζ = 0), reflects
or backscatters the incident wave. So, the reflected wave or
backscattered fieldis denoted byµ0 (details of this concep-
tion are explained in [5]). Consequently, the general solution
µ is known astotal field. Since the total field can be found
by solving first the homogeneous wave equation, we are go-
ing to focus our attention in the construction ofµ0. Thus, in
this section, variableµ0 will be denote asµ for simplifying
notation. Moreover, it is important to remark that any com-
ponent of the vectorial functionA in Eq.(18), withJ = 0̂,
can be found just as solving the scalar case forµ in Eq.(18),
with ζ = 0. In this sense, it will be sufficient to establish the
theory for solving this scalar case.

Let us consider a scalar wave with spatial period or wave-
lengthλ0, refractive index median = 1 (air) and angular-
temporal frequencyω0. Such wave can be represented by
the functionµ̃(t, x̂) = a(x̂) cos (ω0t + φ(x̂)), wherea(x̂)
is the amplitude, andφ(x̂) is the phase. This cosinu-
soidal form is well known from the classic theory for solv-
ing the homogeneous wave equation; specifically speaking,
the method calledseparation of variables, and theFourier
series [22]. However, in an equivalent way, the form of
the wave can be generalized to the complex representation
µ(t, x̂) = f(x̂)eiω0t, whereµ̃ is the real part ofµ, f(x̂) =
a(x̂)eiφ(x̂) is the spatial part ofµ (the so-calledphasoror
complex perturbation[4]), andi is the imaginary unit. Since
this complex representation must satisfy the homogeneous
wave equation, we have that∇2µ − (1/c2

0)(∂
2µ/∂t2) = 0,

where c0 = λ0/T0 is the wave propagation velocity and
T0 denotes the temporal period of such wave. In this case
τ0 = 1/T0 would be called simply as the temporal frequency,
whereω0 = 2πτ0. Thus, when substituting the complex
representation ofµ in the homogeneous wave equation, we
obtain thateiω0t∇2f(x̂) − (i2ω2

0/c2
0)f(x̂)eiω0t = 0, which

implies
(∇2 + k2

0)f(x̂) = 0. (19)

This last expression is calledHelmholtz equation, where
k0 = ω0/c0 = (2πτ0)/(λ0τ0) = (2π)/λ0 is the wave num-
ber or the angular-spatial frequency.

On the other hand, a well-known result in vectorial cal-
culus is thedivergence Gauss theorem[21], which can be
written as

3∫

Ω

∇ · FdV =

2∫

∂Ω

F · n̂dA, (20)

where F = F (x̂) is a C1-vectorial field onΩ such that
F : R3 → R3, andΩ is an elemental region inR3 with
positive parametrized boundary∂Ω. The surface∂Ω can be
a sphere, an ellipsoid, a parallelepiped, etc. In this theorem,
symbol

∫ 3

Ω
denotes the triple integral over the regionΩ,

∫ 2

∂Ω
denotes the double integral over the surface∂Ω, dV is a vol-
ume differential element,dA is an area differential element,
and symbol· denotes dot product. In addition, vectorial func-
tion n̂ represents the unitary normal vector with respect to the
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surface∂Ω, in such a way that, it points towards the outside
of the surface. So, if we takeF = f∇g, wheref = f(x̂)
andg = g(x̂) are two differentiable scalar fields fromR3 to
R, then

∇ · F = ∇ · (f∇g) = ∇f · ∇g + f∇2g. (21)

When substituting this equation in the divergence Gauss re-
lation, and introducing the directional derivative(∂g/∂n) :=
∇g · n̂, we obtain

3∫

Ω

∇f · ∇gdV +

3∫

Ω

f∇2gdV =

2∫

∂Ω

f
∂g

∂n
dA. (22)

Equation (22) is known as thefirst Green identity. Analo-
gously, when consideringF = g∇f , the equality

3∫

Ω

∇g · ∇fdV +

3∫

Ω

g∇2fdV =

2∫

∂Ω

g
∂f

∂n
dA, (23)

is deduced. By subtracting Eq. (23) from Eq. (22), it is con-
cluded that

3∫

Ω

(f∇2g − g∇2f)dV =

2∫

∂Ω

(
f

∂g

∂n
− g

∂f

∂n

)
dA, (24)

a relation calledsecond Green identity. It is important to
remark that the divergence Gauss theorem is also valid for
C1-complex vectorial fieldsF : R3 → C3 that can be ex-
pressed in terms of complex scalar fieldsf, g : R3 → C.
This last includes the possibility of considering fields of the
form F = F (t, x̂), f = f(t, x̂), andg = g(t, x̂), which
means thatF : R4 → C3, andf, g : R4 → C. The va-
lidity of this theorem is a consequence of the linearity of the
integrals for complex valued expressions that can be denoted
asF = Re(F ) + iIm(F ), where Re(F ) and Im(F ), are the
real and the complex parts ofF , respectively. Thus, the only
required condition is to have Re(F ) and Im(F ), asC1-real
valued functions.

4. The Green functions: language of distribu-
tions

Informally, any functiong that satisfies the Helmholtz equa-
tion almost everywhere[26,27] onR3, could be calledGreen
function[4], however, suchg requires to satisfy another prop-
erties in the context ofdistributions[26]. In this sense, ex-
pressionalmost everywhererefers to a property which is sat-
isfied at all points of a domain with the exception of the points
in a zero volume subset of the domain. For this particular
case, the property would be the fulfilling of the Helmholtz
equation. On the other hand, the Green functions and the
Green identities are important and useful, specially in op-
tics, for establishing a transcendental theorem: theintegral
theorem of Helmholtz and Kirchhoff. This theorem is the

key result for supporting thescalar diffraction theoryand
it is related in part with the solution of a particular distri-
butional non-homogeneous wave equation, the so-calledre-
tarded potentialof thed’Alembert equation[5]. Now, let L
be a linear operator applied to scalar functions depending on
x̂. Formally, a distributionG(x̂, ŷ) is said to be aGreen func-
tion with respect toL, if it satisfies: a)G(x̂, ŷ) = G(ŷ, x̂)
for all x̂ = (x, y, z) and ŷ = (u, v, w) in R3, and b)
L[G(x̂, ŷ)] = δ(ŷ − x̂), whereδ(ŷ − x̂) is theDirac delta
distribution. However, every distributionD is said to be a
Dirac delta, if it satisfies: 1)D(ŷ − x̂) = 0, for all ŷ 6= x̂,
and 2)

3∫

R3

D(ŷ − x̂)dV (ŷ) = 1.

In this definitiondV (ŷ) refers to a volume differential ele-
ment with respect to the integration variableŷ. Thus, when
an arbitrary distributionD fulfills properties 1) and 2), we
write δ := D.

Let us considerG(x̂, ŷ) := gŷ(x̂), where gŷ(x̂) =
eik0||x̂−ŷ||/||x̂− ŷ||. Here,|| · || denotes the Euclidean norm
for vectors inR3. This function satisfiesgŷ(x̂) = gx̂(ŷ) by
symmetry, thenG(x̂, ŷ) fulfills property a). Is thisG a Green
function? What linear operator could be related to thisG
to declare it as a Green function? Well, the obvious answer
is that such operator must be involved with the Helmholtz
equation. So, if we considerL := [−1/(4π)](∇2 + k2

0), then
L[f(x̂)] = [−1/(4π)](∇2 + k2

0)f(x̂) for any smooth func-
tion f : R3 → C. Moreover,D(ŷ − x̂) := L[G(x̂, ŷ)] =
[−1/(4π)](∇2 + k2

0)gŷ(x̂) = 0 for all x̂ 6= ŷ, from Propo-
sition 1 in Appendix A. This also implies that property 1) is
satisfied byD(ŷ − x̂), every time that̂x 6= ŷ. Thus, assum-
ing this D as a simple function depending on̂y, which is a
discontinuous function in̂y = x̂, we rigorously have that

3∫

R3

D(ŷ − x̂)dV (ŷ) = 0

by using improper integrals. Even in the case of more com-
plex integrals, if a function is zero almost everywhere in
certain domain, then its Lebesgue integral on such domain
should be zero [27]. Thus, since property 2) is not achieved
by this D, it implies thatG(x̂, ŷ) = gŷ(x̂) is not a Green
function. But, why so many references [2–4,8] declaregŷ(x̂)
as a Green function? Well, may be the answer is in the in-
terpretation ofD, and consequentlyG, as distributions. In
the spirit of considering a sequence of well-behaved approxi-
mating functions (see the Remarks in Appendix A),G can be
rewritten to the equivalent form

G(x̂, ŷ) := lim
γ→0+

eik0rfγ(r), (25)

wherer = ||x̂− ŷ|| and lim
γ→0+

fγ(r) = 1/r for r > 0. In this

case for eachγ > 0, fγ is a smooth function for allr > 0
and right continuous atr = 0. In other words,dfγ/dr exists
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for all r > 0, and lim
r→0+

fγ(r) = fγ(0), respectively. Now,

it is evident thatG in Eq. (25) satisfies properties a) and 1),
however, if property 2) is required forD with this newG, we
need to construct functionfγ conveniently. There are many
forms to do this construction, but we are going to propose
a particular one. Before starting with this construction, let
us think again thatG(x̂, ŷ) is gŷ(x̂), and consider the next
argumentation:

From property 1), it is inferred that the integral ofD
on R3 is the same that the integral ofD on any open ball
Bε(x̂) = {ŷ ∈ R3 : ||ŷ − x̂|| < ε}. Then,

3∫

R3

D(ŷ − x̂)dV (ŷ) =
(−1

4π

)

×
3∫

Bε(x̂)

(∇2 + k2
0)gŷ(x̂)dV (ŷ) =

(−1
4π

)

×




3∫

Bε(x̂)

∇2gŷ(x̂)dV (ŷ) + k2
0

3∫

Bε(x̂)

gŷ(x̂)dV (ŷ)


 , (26)

for all ε > 0 fixed. Thus, when considering a translation to
the origin, a change to spherical coordinates, and the use of
improper integrals, we have that

3∫

Bε(x̂)

gŷ(x̂)dV (ŷ) =

3∫

Bε(x̂)

gx̂(ŷ)dV (ŷ)

=
4π

k2
0

[eik0ε(1− ik0ε)− 1], (27)

independently of the discontinuity ofgx̂(ŷ) at ŷ = x̂. Now,

3∫

Bε(x̂)

∇2gŷ(x̂)dV (ŷ) =

3∫

Bε(x̂)

∇ · ∇gŷ(x̂)dV (ŷ)

= −
3∫

Bε(x̂)

∇ŷ · ∇gŷ(x̂)dV (ŷ)

= −
2∫

∂Bε(x̂)

∇gŷ(x̂) · n̂(ŷ)dA(ŷ), (28)

wheren̂(ŷ) is the unitary normal vector to the surface∂Bε(x̂)
anddA(ŷ) is an area differential element with respect toŷ.
This is a consequence of Proposition 2 in Appendix A and
the divergence Gauss theorem in variableŷ. Following the
calculus of the previous triple integral (now a double inte-
gral) we have that

. . . = −
2∫

∂Bε(x̂)

eik0r

[
ik0r − 1

r3

]
(x̂− ŷ)

· (ŷ − x̂)
||ŷ − x̂||dA(ŷ) =

2∫

∂Bε(x̂)

eik0r

[
ik0r − 1

r3

]

×
(

r2

r

)
dA(ŷ) = 4πeik0ε(ik0ε− 1), (29)

where the valuesr = ||x̂ − ŷ|| in the double integrals are all
equal toε, becausêy ∈ ∂Bε(x̂) = {ŷ ∈ R3 : ||ŷ − x̂|| = ε}.
When considering Eqs. (27), (28), and (29) in connection
with Eq. (26), we get property 2). Therefore, functiongŷ(x̂)
results to be a Green function.

The last argumentation, although desirable, is false and its
main fail is: function∇gŷ(x̂) = eik0r(ik0r−1)(x̂− ŷ)/r3 is
not aC1-function (a smooth function) onBε(x̂), specifically
at ŷ = x̂ wherer = 0. Then, we have incorrectly applied
the divergence Gauss theorem in Eq. (28), which requires
smoothness for the vector field∇gŷ(x̂). However, this mis-
take motivates us to think about an appropriate election of
functionfγ in Eq. (25). The sequence of functionsfγ satisfy
lim

γ→0+
eik0rfγ(r) = eik0r/r = gx̂(ŷ) for all ŷ 6= x̂ (r > 0),

but that is not enough. For eachγ > 0, we also need smooth-
ness for the terms∇eik0rfγ(r) for all ŷ ∈ Bε(x̂). However,
since the termeik0r is smooth for allr ≥ 0, then a sequence
of functions of the form

fγ(r) :=

{
p0(r) r ≥ γ

pγ(r) 0 ≤ r < γ,
(30)

wherep0(r) := 1/r, could be useful. For eachγ > 0, pγ(t)
could be a convenient polynomial function, in such a way
that pγ(γ) = p0(γ), p′γ(γ) = p′0(γ), andp′′γ(γ) = p′′0(γ).
Here, symbols′ and ′′ denote, correspondingly, the first and
the second derivatives with respect tor. Hence, these con-
ditions would warrant the smoothness offγ for all r > 0.
However, if pγ(r) is a linear combination ofr-powers and
we want to analyze the behavior of∇eik0rfγ(r) (particularly
at r = 0), we first need to calculate the resultant expressions
of the partial derivatives ofeik0rrn, with respect tox, y, and
z. For instance, from the chain rule we have

∂

∂x
[eik0rrn] = eik0r[nrn−1 + ik0r

n]
(x− u)

r
, (31)

for x̂ 6= ŷ (or r > 0). This expression is not necessarily
right continuous atr = 0 when considering the definition
of continuity by lateral limits. However, if we achieved to
avoid divisions byr (removing the discontinuity atr = 0),
the formula in Eq. (31) would be better behaved. Thus, by
considering integer powers ofr such thatn ≥ 2 and defining
the vector̂i := (1, 0, 0), we get
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∂

∂x
[eik0rrn]

∣∣∣∣
x̂=ŷ

:= lim
h→0

eik0rrn|x̂=ŷ+hî − eik0rrn|x̂=ŷ

h

= lim
h→0

eik0|h||h|n
h

= 0, (32)

due to the fact that

lim
h→0+

eik0|h||h|n
h

= lim
h→0−

eik0|h||h|n
h

= 0,

as the reader can confirm. Moreover, from Eq.(31) it follows
that

lim
x̂→ŷ

∂

∂x
[eik0rrn]

= lim
x→u
r→0+

{
eik0r[nrn−1 + ik0r

n]
(x− u)

r

}

= lim
x→u
r→0+

{
eik0r[nrn−2 + ik0r

n−1](x− u)
}

= 0. (33)

In consequence, Eqs. (31)-(33) warrant continuity for the
term ∂[eik0rrn]/∂x for all x̂ 6= ŷ, and also forx̂ = ŷ,
when considering this term as function ofx̂. Nevertheless,
due to the radial symmetry ofeik0r[nrn−1 + ik0r

n]/r in
Eq. (31), term∂[eik0rrn]/∂x, interpreted as function of̂y,
must be also a continuous function. The same reasoning ap-
plies to∂[eik0rrn]/∂y and∂[eik0rrn]/∂z; therefore, iffγ(r)
is a polynomial of powersn ≥ 2 for r values such that0 ≤
r < γ, then∇eik0rfγ(r) will be continuous for all points
ŷ corresponding to thoser values. Moreover, without loss of
generality, we can assume thatpγ(r) = ar2+br3+cr4+dr5

with pγ(γ/2) = p0(γ/2), which implies that

pγ(r) = (42/γ3)r2 − (111/γ4)r3

+ (102/γ5)r4 − (32/γ6)r5. (34)

So, from Eqs. (30) and (34) we get

∇eik0rfγ(r)=
{

eik0rA(r)(x̂− ŷ) r ≥ γ
eik0rB(r)(x̂− ŷ) 0 ≤ r < γ,

(35)

whereA(r) = [ik0r − 1]/r3 and

B(r) =
84
γ3
− 333r

γ4
+

408r2

γ5
− 160r3

γ6

+ (ik0)
[
42r

γ3
− 111r2

γ4
+

102r3

γ5
− 32r4

γ6

]
, (36)

are two functions such thatlim
r→γ+

A(r) = A(γ) = B(γ) =

lim
r→γ−

B(r), lim
r→γ+

A′(r) = A′(γ) = B′(γ) = lim
r→γ−

B′(r),

lim
r→0+

B(r) = B(0), and lim
r→0+

B′(r) = B′(0). Equation (35)

is now a smooth function (C1-class) for all̂y 6= x̂ and also for
ŷ = x̂. In the same way, termeik0rfγ(r) is another smooth

function for allŷ by construction. From this construction and
Eq. (25), we can calculate again

3∫

R3

D(ŷ − x̂)dV (ŷ)

= − 1
4π

lim
γ→0+




3∫

Bε(x̂)

∇2eik0rfγ(r)dV (ŷ)

+k2
0

3∫

Bε(x̂)

eik0rfγ(r)dV (ŷ)


 , (37)

for anyε > 0 arbitrary and fixed. But this time we have

3∫

Bε(x̂)

eik0rfγ(r)dV (ŷ) =

3∫

Bε(x̂)\Bγ(x̂)

eik0r

r
dV (ŷ)

+

3∫

Bγ(x̂)

eik0rpγ(r)dV (ŷ)

=
4π

k2
0

[
eik0ε(1− ik0ε)− eik0γ(1− ik0γ)

]

+ eik0r•pγ(r•)
4πγ3

3
, (38)

by definition of fγ when consideringγ < ε. In the last
expression, the integral of(eik0r/r) can be calculated by a
translation to the origin and spherical coordinates, while the
integral ofeik0rpγ(r) is obtained from themean value theo-
rem for integrals[21,36] due to the integrand’s continuity. In
this caser• = ||x̂ − ŷ•|| with ŷ• ∈ Bγ(x̂) ∪ ∂Bγ(x̂), and
the factor(4πγ3/3) is the volume of the ballBγ(x̂). On the
other hand, when taking the complex module of the integral
in Eq. (38), we have that

∣∣∣∣∣∣∣

3∫

Bε(x̂)

eik0rfγ(r)dV (ŷ)

∣∣∣∣∣∣∣
≤ 4π

k2
0

|eik0ε(1− ik0ε)

− eik0γ(1− ik0γ)|+ 4πγ3

3
|pγ(r•)|. (39)

Additionally, from Eq. (34), the triangle inequality, and the
fact thatr• ≤ γ, it follows that

4πγ3

3
|pγ(r•)| ≤ 1148πγ2

3
. (40)

In an extreme case(4πγ3/3)|pγ(r•)| ' (4πγ2/3) for r•-
values close or equal toγ, but the term(4πγ3/3)|pγ(r•)|
is always dominated by proportional factors toγ2. Then,
when considering very small values ofγ (the limit context
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of Eq. (37)), the inequalities in Eqs. (39) and (40) permit us
to establish thateik0r•pγ(r•)(4πγ3/3) ≈ 0 and

k2
0

3∫

Bε(x̂)

eik0rfγ(r)dV (ŷ)

≈ 4π
[
eik0ε(1− ik0ε)− 1

]
, (41)

from Eq. (38). Now, due to the form of term∇eik0rfγ(r) in
Eq. (35) and Proposition 2, it follows that∇2eik0rfγ(r) =
∇ · ∇eik0rfγ(r) = −∇ŷ · ∇eik0rfγ(r). Therefore,

3∫

Bε(x̂)

∇2eik0rfγ(r)dV (ŷ)

= −
3∫

Bε(x̂)

∇ŷ · ∇eik0rfγ(r)dV (ŷ)

= −
2∫

∂Bε(x̂)

eik0rA(r)(x̂− ŷ) · (ŷ − x̂)
||ŷ − x̂||dA(ŷ)

= · · · = 4πeik0ε(ik0ε− 1), (42)

as a consequence of the divergence Gauss theorem in vari-
ableŷ, applied to the field∇eik0rfγ(r), and the formula for
∇eik0rfγ(r) whenγ < ε = r. Naturally, the reduction of
the calculations in the double integral of Eq. (42) is implied
from the fact that̂y ∈ ∂Bε(x̂). So, since the smoothness of
the field∇eik0rfγ(r) onBε(x̂) is warranted in this case, then
functionG in Eq. (25) satisfies property 2), when considering
Eqs. (41), (42), and (37). In conclusion,G(x̂, ŷ) in Eq. (25),
with fγ in Eq. (30) andpγ in Eq. (34), is a true Green func-
tion. And of course, thisG is understood as the limit of a
sequence of smooth functions that converge togŷ(x̂) almost
everywhere. In mathematical terms,G(x̂, ŷ) = gŷ(x̂) for all
x̂ 6= ŷ, except inx̂ = ŷ, wheregŷ(ŷ) is not defined and
G(ŷ, ŷ) = 0. Informally speaking, that is whygŷ(x̂) inherits
the name of its equivalentG(x̂, ŷ).

Finally, we could be attempted to believe thatG is an or-
dinary function like

G•(x̂, ŷ) =





eik0||x̂−ŷ||/||x̂− ŷ|| for x̂ 6= ŷ

0 for x̂ = ŷ,
(43)

and that is true, in some way, with respect to the image sets
induced by both expressions. Although formally

3∫

R3

L[G•]dV (ŷ) = 0,

there is no obstacle to callG• as a Green function because
G is also ageneralizationof G• or, equivalently,G• = gŷ

almost everywhere. Something similar happens when think-
ing in the one dimensional step function, also known as the
Heaviside step. The derivative of the Heaviside step is zero
at all points, except in the jump discontinuity where it is not
defined. The integral of this derivative along the real line is
identically zero. However, if the Heaviside step is understood
as a distribution, then itsweak derivative[26] is a Dirac delta
(see the remarks in Appendix A). As well known, the integral
of this weak derivative along the real line is identically one.
These affirmations may seem contradictory, but they are only
a question of abstract interpretation.

5. The integral theorem of Helmholtz and
Kirchhoff and the retarded potential

Let us consider an elemental regionΩ in R3 as a closed set,
in such a way that its boundary is conformed by two in-
dependent surfaces. This means that∂Ω = S ∪ ∂Bε(x̂0)
with S ∩ ∂Bε(x̂0) = ∅, whereS is a surface that bounds
∂Bε(x̂0) and∅ denotes the empty set. Also, we are going
to assume thatS is smooth by parts, whereS ⊂ Ω and
∂Bε(x̂0) ⊂ Ω, due to the fact thatΩ is closed. So, re-
gion Ω can be assumed as a glass ovoid with an inside air
sphere, where the elliptical surface of the ovoid corresponds
to S, and the surface of the air sphere is∂Bε(x̂0). It should
be understood that∂Ω limits two exterior zones and one in-
ner zone (see Fig. 1): the big exterior zone given by the
open set(Ω ∪ Bε(x̂0))c = {x̂ ∈ R3 : x̂ /∈ Ω ∪ Bε(x̂0)},
the small exterior zone given byBε(x̂0), and the inner zone
Ω\∂Ω = Ω\(S∪∂Bε(x0)) = {x̂ ∈ Ω : x̂ /∈ S∪∂Bε(x0)}.

Therefore, when considering possible parametrizations of
the surfacesS and ∂Bε(x̂0), we must think that the uni-
tary normalŝn(x̂) should point towards the big exterior zone
whenx̂ ∈ S, and point towards the small exterior zone when
x̂ ∈ ∂Bε(x̂0), respectively. So, if we apply the second Green
identity to aC1-phasorf(x̂) = a(x̂)eiφ(x̂), corresponding to
someµ solution of the homogeneous wave equation onΩ,
and the functiong(x̂) = eik0r/r with r = ||x̂− x̂0||, then we
get

FIGURE 1. Sketch of the regionΩ. In this example, it is assumed
as an ovoid with an inside sphere of radiusε.
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2∫

∂Ω

(
f

∂g

∂n
− g

∂f

∂n

)
dA =

3∫

Ω

(f∇2g − g∇2f)dV. (44)

However,
3∫

Ω

(f∇2g− g∇2f)dV =

3∫

Ω

(−k2
0fg + k2

0gf)dV = 0, (45)

because both the phasorf and function g satisfy the
Helmholtz equation for all points inΩ. This implies that

2∫

∂Ω

(
f

∂g

∂n
− g

∂f

∂n

)
dA =

2∫

S

(
f

∂g

∂n
− g

∂f

∂n

)
dA

+

2∫

∂Bε(x̂0)

(
f

∂g

∂n
− g

∂f

∂n

)
dA = 0, (46)

or, equivalently,

2∫

∂Bε(x̂0)

(
f

∂g

∂n
− g

∂f

∂n

)
dA

= −
2∫

S

(
f

∂g

∂n
− g

∂f

∂n

)
dA. (47)

Since the double integral on the right hand side of Eq.(47) is
a constant, independently of theε value, it follows that

lim
ε→0+

2∫

∂Bε(x̂0)

(
f

∂g

∂n
− g

∂f

∂n

)
dA =

−
2∫

S

(
f

∂g

∂n
− g

∂f

∂n

)
dA, (48)

including the possibility that∂Ω = S ∪ {x̂0} for the limit
case. Now, the integral on∂Bε(x̂0) in Eqs.(47) and (48) can
be expressed as

2∫

∂Bε(x̂0)

(
f

∂g

∂n
− g

∂f

∂n

)
dA

= 4πε2

(
f

∂g

∂n
− g

∂f

∂n

)∣∣∣∣
x̂∗

, (49)

from the mean value theorem of integrals, where4πε2 is
the area of∂Bε(x̂0) andx̂∗ is some fixed point in∂Bε(x̂0).
Thus, if x̂∗ ∈ ∂Bε(x̂0), then

g(x̂∗) =
eik0ε

ε
, (50a)

∇g(x̂∗) = eik0ε

(
ik0ε− 1

ε3

)
(x̂∗ − x̂0), (50b)

by using the formulas in Proposition 1. Owing to the fact
that vectorn̂ points towards the small exterior zone in this
particular case, we have that

∂g

∂n
(x̂∗) = ∇g · n̂|x̂∗ , (51a)

n̂(x̂∗) =
x̂0 − x̂∗
||x̂0 − x̂∗|| = − x̂∗ − x̂0

ε
, (51b)

then

∂g

∂n
(x̂∗) =

eik0ε(1− ik0ε)
ε2

, (52)

from Eqs. (50) and (51). Hence

2∫

∂Bε(x̂0)

(
f

∂g

∂n
− g

∂f

∂n

)
dA

= 4π

[
f(x̂∗)eik0ε(1− ik0ε)− εeik0ε ∂f

∂n
(x̂∗)

]
, (53)

after substituting Eqs. (50) and (52) into Eq. (49). Ifε → 0+,
thenx̂∗ → x̂0 and

lim
ε→0+

2∫

∂Bε(x̂0)

(
f

∂g

∂n
− g

∂f

∂n

)
dA = 4πf(x̂0), (54)

from Eq. (53) and the fact thatf and∂f/∂n are continuous
functions (f is C1-function). The limit in Eq. (54) represents
the same to write

f(x̂0) =
1
4π

2∫

S

(
g
∂f

∂n
− f

∂g

∂n

)
dA, (55)

by considering Eqs. (48) and (54). Equation (55) is valid
for anyC1-phasorf : R3 → C, whereg(x̂) = eik0r/r and
r = ||x̂ − x̂0||. In this caseS ∪ {x̂0} = ∂Ω is the union
of a smooth-by-parts surfaceS with the frontier pointx̂0.
Examples of smooth-by parts surfaces could be a sphere, an
ellipsoid, the three faces of triangular pyramid, the six faces
of a parallelepiped, etc. So, without loss of generality and
in the context ofdistributions, the result in Eq. (55) is also
valid when simply assumingS = ∂Ω in such a way that
x̂0 ∈ Ω\S. Equation (55) corresponds to theintegral theorem
of Helmholtz and Kirchhoff, which can be generalized to any
g function satisfying the Helmholtz equation in an equivalent
sense. In other words,g in Eq. (55) could be any Green func-
tion. In this argumentation we have assumed thatL[f ] = 0
for all x̂ ∈ Ω, but such hypothesis can be modified to an
equivalent case as follows: LetG be a Green function with
respect to the linear operatorL, and leth be a distribution
similar toh0δ(x̂− x̂1) with a constant factor (an independent
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term with respect to variablêx) h0, andx̂1 /∈ Ω \ ∂Ω. Thus,
if f is a function such thatL[f(x̂)] = h(x̂), then

f(ŷ) =
1
4π

2∫

∂Ω

(
G(x̂, ŷ)

∂f

∂n
(x̂)

− f(x̂)
∂G

∂n
(x̂, ŷ)

)
dA(x̂), (56)

for all ŷ ∈ Ω \ ∂Ω. Equation (56) can be simply deduced, for
instance, from the second Green identity we have

2∫

∂Ω

(
G

∂f

∂n
−f

∂G

∂n

)
dA(x̂) =

3∫

Ω

(G∇2f − f∇2G)dV (x̂)

=

3∫

Ω

G(∇2 + k2
0)fdV (x̂)−

3∫

Ω

f(∇2 + k2
0)GdV (x̂), (57)

but this is the same that

. . . = −4π

3∫

Ω

GL[f ]dV (x̂) + 4π

3∫

Ω

fL[G]dV (x̂)

= −4π

3∫

Ω

G(ŷ, x̂)h(x̂)dV (x̂)

+ 4π

3∫

Ω

f(x̂)δ(x̂− ŷ)dV (x̂)

= −4π

3∫

Ω

G(ŷ, x̂)h(x̂)dV (x̂) + 4πf(ŷ), (58)

from definition ofG. Then, from Eqs.(57) and (58) we get

f(ŷ) =
1
4π

2∫

∂Ω

(
G

∂f

∂n
− f

∂G

∂n

)
dA(x̂)

+

3∫

Ω

G(ŷ, x̂)h(x̂)dV (x̂). (59)

So, if h(x̂) = h0δ(x̂− x̂1) with x̂1 /∈ Ω \ ∂Ω, then the triple
integral onΩ in Eq. (59) is identically zero from the proper-
ties of the Dirac delta. This is because

3∫

Ω

G(ŷ, x̂)δ(x̂− x̂1)dV (x̂) = G(ŷ, x̂1),

only if x̂1 ∈ Ω \ ∂Ω. Moreover, for allx̂ ∈ Ω \ ∂Ω, the
integrandG(x̂, ŷ)h(x̂) = h0G(x̂, ŷ)δ(x̂ − x̂1) = 0 does
not have any discontinuity inΩ \ ∂Ω when consideringG
in Eq. (25). Thus, by interchanginĝx by ŷ and vice-versa

in Eq. (59), we get apotential solutionfor the problem of
solving L[f(x̂)] = h(x̂) for all x̂ ∈ Ω \ ∂Ω. Such a prob-
lem would be solved with the next hypothesis: the knowl-
edge of functionsf and∂f/∂n on ∂Ω, a given functionh,
preferable smooth and defined onΩ, and a possible and con-
venient Green functionG, defined with respect to the opera-
tor L. The inferred solution from Eq. (59) can be expressed
asf(x̂) = f0(x̂) + f1(x̂) with

f0(x̂) :=
1
4π

2∫

∂Ω

(
G

∂f

∂n
− f

∂G

∂n

)
dA(ŷ) (60)

and

f1(x̂) :=

3∫

Ω

G(x̂, ŷ)h(ŷ)dV (ŷ), (61)

where

L [f1(x̂)] =

3∫

Ω

L[G(x̂, ŷ)]h(ŷ)dV (ŷ)

=

3∫

Ω

δ(ŷ − x̂)h(ŷ)dV (ŷ) = h(x̂). (62)

Since L[f(x̂)] = h(x̂) by hypothesis, it follows that
L[f0(x̂)] = 0. In other words,f0 and f1 are particu-
lar solutions of the homogeneous and the non-homogeneous
Helmholtz equation, respectively. We say thatf0 andf1 are
“particular” functions, because both of them depend on the
G chosen. Eventually, beyond of considering a bounded set
asΩ, if we think in solvingL[f ] = h on R3, the result in
Eq. (59) would be equivalent to consider

f(x̂) =

3∫

R3

G(x̂, ŷ)h(ŷ)dV (ŷ), (63)

as the potential solution.
On the other hand, the theory of Green functions, ex-

posed in a previous section, was described with respect to
the operator[−1/(4π)][∇2 + k2

0]. However, this theory
does not change if we consider other similar operators as
(∇2 + k2

0) or [∇2 + (k0/c0)2]. Thus, when considering
L := [−1/(4π)][∇2 + (k0/c0)2], function

g0(x̂) :=
−ei(−k0/c0)||x̂−ŷ||

||x̂− ŷ|| , (64)

satisfies that (
∇2 +

k2
0

c2
0

)
g0(x̂) = 0, (65)

when assuminĝy as a constant vector and̂x 6= ŷ. To verify
Eq. (65), it is only required to replacek0 andx̂0 in Proposi-
tion 1 by−k0/c0 andŷ, respectively. Now, we want to solve

(
1
c2
0

∂2

∂t2
−∇2

)
µ(t, x̂) = ζ(t, x̂), (66)
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on a domainΩ, where ζ (considered only as function of
x̂) behaves as a Dirac delta translated to some point out-
side of Ω \ ∂Ω. So, by proposing a solution of the form
µ(t, x̂) = f(x̂)eik0t and substituting this solution in Eq. (66),
we get

eik0t

(
−∇2 − k2

0

c2
0

)
f(x̂) = ζ(t, x̂). (67)

Therefore, when Eq.(67) is evaluated at(t−(||x̂−ŷ||/c0), x̂),
it is obtained that

eik0(t−(||x̂−ŷ||/c0))

(
−∇2 − k2

0

c2
0

)
f(x̂)

= ζ(t− (||x̂− ŷ||/c0), x̂). (68)

In some way, the equality in Eq. (67) suggests thatζ could
be interpreted as a function with separable variables, time
t, and positionx̂. This is similar to conveniently think that
ζ(t, x̂) = P (t)Q(x̂), then Eq. (67) can be expressed as
L[f(x̂)] = h(x̂), whereh(x̂) = h0Q(x̂) andh0 = h0(t) =
P (t)e−ik0t/(4π) is a constant term with respect to variable
x̂. Consequently, if the spatial part ofζ is a function like
Q(x̂) = δ(x̂−x̂1) with x̂1 /∈ Ω\∂Ω, then the phasorf can be
calculated by the integral theorem of Helmholtz and Kirch-
hoff, the second Green identity, and any convenient Green
functionG, as

f(ŷ) =
1
4π

2∫

∂Ω

(
G

∂f

∂n
− f

∂G

∂n

)
dA(x̂)

=
1
4π

3∫

Ω

(G∇2f − f∇2G)dV (x̂), (69)

for all ŷ ∈ Ω \ ∂Ω. In addition, when takingG = g0, it is
concluded that

f(ŷ) =
1
4π

3∫

Ω

e−ik0||x̂−ŷ||/c0

||x̂− ŷ||

×
(
−∇2 − k2

0

c2
0

)
f(x̂)dV (x̂), (70)

from Eqs.(64), (65), and (69). Furthermore, Eq.(70) implies
that

µ(t, ŷ)=
1
4π

3∫

Ω

1
||x̂−ŷ||ζ

(
t−||x̂−ŷ||

c0
, x̂

)
dV (x̂), (71)

from the form assumed forµ, and Eqs. (68) and (70). The
expression in Eq. (71) is known as theretarded potentialof
ζ, as mentioned in [5]. Its name reveals that the signalµ is
recovered from the sourceζ with a delay in time. This poten-
tial represents a standard solution of thed’Alembert equation
displayed in Eq. (66). Moreover, the formula in Eq. (71) is
independent of the fact thatζ behaves as a Dirac delta. For

instance, if we simply assume thatζ is a smooth function on
Ω, then Eq. (68) can be expressed as

L[f(x̂)] = h(x̂) := H
(

t− ||x̂− ŷ||
c0

, x̂

)
, (72)

whereH(t, x̂) = (e−ik0t/(4π))ζ(t, x̂). From Eq. (61), by
interchanginĝx by ŷ, and consideringG = −g0, it follows
that

f(ŷ) =

3∫

Ω

e−i(k0/c0)||x̂−ŷ||

||x̂− ŷ|| H
(

t− ||x̂− ŷ||
c0

, x̂

)
dV (x̂)

=
e−ik0t

4π

3∫

Ω

1
||x̂− ŷ||ζ

(
t− ||x̂− ŷ||

c0
, x̂

)
dV (x̂), (73)

is a potential solution of the equationL[f ] = h given in
Eq. (72). Indeed, from the form assumed forµ, Eq. (73)
induces again the formula given in Eq. (71). Finally, if we
want to solveL[f ] = h on R3, we could use Eq.(63) and
conclude that

µ(t, ŷ)=
1
4π

3∫

R3

1
||x̂− ŷ||ζ

(
t− ||x̂− ŷ||

c0
, x̂

)
dV (x̂), (74)

in analogy to the previous formulas that preserve the name
of retarded potential. Nevertheless, Eq. (74) is also valid for
the case whenζ is a Dirac deltaδ, specially in the case of ap-
proximating thisδ with a sequence of smooth functions like
the Gaussians.

6. Discussion and Conclusions

We have derived the retarded potential of a non-
homogeneous wave equation by considering certain subtle
mathematical details. These details refer to the use of dis-
tributions, in our own and simplified interpretation of these
generalized functions, and in what sense it is said that a given
function is a Green function. According to our analysis, we
obtained a distributional solutionf for Eq. (72), which per-
mits us to construct a solutionµ for Eq. (66). When con-
sidering Eq. (72) in a bounded setΩ, the solution can take
place by establishing boundary conditions in the frontier∂Ω,
as exposed by Eq. (59). These conditions may be imposed in
f , or in ∂f/∂n, depending on the problem. For instance, in
the simple case ofh = 0 for all points inΩ, it follows that
f = f0 from Eq. (60). In this particular case, if we only
know f on the frontier∂Ω (Dirichlet problem), then a desir-
able election ofG could be a Green function that vanishes on
this boundary.

In a general perspective, the base idea of the potential so-
lutions is manifested by Eqs. (59)-(61) and (63), where the
election of an appropriate Green function is crucial to obtain
specific results. For example, the formula given by Eq. (71)
in the bounded case, or by Eq. (74) in the unbounded case,
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36 A. TÉLLEZ-QUIÑONES, J.C. VALDIVIEZO-NAVARRO, A. SALAZAR-GARIBAY AND A.A. LÓPEZ-CALOCA

respectively. The retarded potentials allow us to build so-
lutions of classic problems in electrodynamics, wave prop-
agators, radar, among others. For instance, potential theory
can be applied for modeling equations related with the emis-
sion and detection of a SAR signal [5, 6]. In a SAR config-
uration, the main equation that involves the recovered val-
ues of the signal and the scattering object density is a conse-
quence of using Eqs. (71) or (74), in connection with the first
Born approximation. Such an approximation reduces the ill-
posed problem of recovering the scattering object to a simple
convolution-filtering problem.

About the mathematical rigor found in some references,
an explicit and formal explanation about Green functions, by
using operator theory, is found in [1]. Although in this ref-
erence there is no mention on thatgŷ(x̂) = eik0r/r is Green
function with respect to the Helmholtz operator, an exten-
sive analysis to derive Green functions from many different
linear operators is given. Nevertheless, such analysis is out
of the scope of these notes. On the other hand, it is inter-
esting to notice that expressiongŷ(x̂) is declared as a Green
function in many books (for example [2–4, 8]), without any
formal proof of that fact. Whereas in some other books and
for some other kind of Green functions, a proof is provided
but with drawbacks. For instance, the argumentation in [21]
when justifyingf(x̂, ŷ) = −1/(4π||x̂− ŷ||) as a Green func-
tion with respect to a distributional Poisson equation. In that
reference, the drawback is exactly the same that was exposed
in Sec. 4 on the illegal use of the divergence Gauss theorem.
Of course, we do not pretend to criticize that books because
they are actually excellent references and we are far from ex-
posing a formal proof. However, we expect at least to mo-
tivate the reader on the importance of considering sequences
of approximating functions [28], to have a more clear idea
about the handling of distributions. Such as made in Eq. (25),
by considering these kind of sequences, an equivalence re-
lation could be established betweenG(x̂, ŷ), defined in Eq.
(25), and functiongŷ(x̂). SinceG(x̂, ŷ) = gŷ(x̂) is valid
almost everywhere with respect to the variableŷ ∈ R3 (or
x̂ ∈ R3) [26, 27], there is no doubt now of callinggŷ(x̂)
as a Green function. In a similar manner, the argumenta-
tion in [21] when justifyingf(x̂, ŷ) as a Green function could
be improved when considering sequences of smooth approx-
imating functions. Just as Jackson explains in his analysis
on Poisson and Laplace equations in reference [3], we want
to emphasize a very good footnote which refers to the vol-
ume integral of Eq. (1.36) in that reference: “The reader may
complain that (1.36) has been obtained in an illegal fashion
since1/|x − x′| is not well-behaved inside the volumeV .
Rigor can be restored by using a limiting process. . . ” Well,
suchlimiting processhas been exemplified in this work.

Appendix A

Remarks:
I) Based on [28], definition ofdistribution for the general
case of functionsh : R3 → C is given as follows: LetD be

the set ofC∞-functionsφ such that,φ, with all its deriva-
tives vanish at infinity as fast as||x̂||−N when ||x̂|| → ∞,
and independently of how long is the positive integerN . Any
functionφ in the setD is said to beparticularly well-behaved
and such set would correspond to the space oftest functions
defined in [26]. According to [28], a sequence of functions
{hγ} (considering valuesγ > 0) is said to beregular, if and
only if limγ→0+

∫ 3

R3 hγφdV exists, for allφ ∈ D. Thus, a
distributionH is a regular sequence of functions inD given
by {hγ}, where symbol

3∫

R3

HφdV

means

lim
γ→0+

3∫

R3

hγφdV. (A1)

Of course, this symbol is not a true integral, becauseH is a
sequence. Even in the case whenH is interpreted as the limit
of this sequence, such limit could not be an ordinary function
and that is whyH is declared as asymbolic function[28].
In a more strict sense, adistribution, is a continuous linear
functionalTH defined on the space of functionsD [1,26], as
the symbolic notation

TH(φ) :=

3∫

R3

HφdV

suggests.
II) In this discussion, we have relaxed the hypothesis by con-
sideringD, as the set conformed by functions that are at
least ofC1-class and that vanish at infinity in the next weak
sense [26]: functionh vanishes at infinity, if and only if
V [St,h] is finite, for all constantt > 0. Here,St,h := {x̂ :
|h(x̂)| > t} andV [St,h] is the volume (orBorel measure)
of the setSt,h. Moreover, in this work, adistribution H is
understood as the limit of a sequence{hγ}, conformed by el-
ements in the setD, our particular set ofwell-behavedor test
functions. However, for practical purposes, our test functions
do not require to satisfy more properties, like the regularity
condition imposed in [28]. Conceptually, we are assuming
that

H(x̂) := lim
γ→0+

hγ(x̂). (A2)

Therefore, when an ordinary functionh is such thath(x̂) =
H(x̂) almost everywhere, we say thath is the distributionH.
III) When considering{eik0rfγ(r)}with r = ||x̂|| in Eq. (25)
(the simple case when̂y = 0̂), we clearly have that functions
hγ(x̂) := eik0rfγ(r) are ofC1-class, as described in Sec. 4.
Now, since|hγ(x̂)| = |fγ(r)| = fγ(r), thenSt,hγ = St,γ :=
{x̂ : fγ(r) > t}. Hence, given a pair of constantst, γ > 0,
it is not difficult to observe thatV [St,γ ] is finite in any case:
a) For2/γ ≤ t, there is nôx ∈ R3 such thatfγ(r) > t be-
cause the maximum value offγ is achieved atr = γ/2, then
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St,γ = ∅ andV [∅] = 0. b) For1/γ ≤ t < 2/γ, we have
St,γ = Br2(0̂) \Br1(0̂) for some fixed valuesr1 andr2 such
that0 < r1 < r2 ≤ γ. Here,Br1(0̂) = Br1(0̂) ∪ ∂Br1(0̂)
and that impliesSt,γ ⊂ Br2(0̂) ⊂ Bγ(0̂), which means that
V [St,γ ] ≤ V [Br2(0̂)] ≤ V [Bγ(0̂)] = (4πγ3/3). c) For
t < 1/γ, we haveSt,γ = B1/t(0̂) \ Br1(0̂) ⊂ B1/t(0̂)
for some fixed valuer1 such that0 < r1 < 1/t, then
V [St,γ ] ≤ V [B1/t(0̂)] = (4π/3t3).

Therefore, remark III) establishes that the sequence of
functions used in Eq. (25) is a sequence of well-behaved
functions, a sequence in the setD defined in remark II).
IV) According to our definition ofD, any functionφ in
this set has at least a continuous partial derivative∂φ/∂x (it
could be also with respect toy, or z). Then, a sequence of
C2-class functions inD given by{hγ}, could induce a se-
quence{∂hγ/∂x} contained inD. If so, we can talk about
∂wH/∂x = limγ→0+ ∂hγ/∂x andH = limγ→0+ hγ , inde-
pendently if these limits represent functions or not. There-
fore, if the sequences{∂hγ/∂x} and{hγ} are such that

3∫

R3

(∂wH/∂x)φdV = −
3∫

R3

H(∂φ/∂x)dV, (A3)

for all φ ∈ D (by considering the symbolic representation in
Eq. (A1)), then∂wH/∂x is said to be aweak derivativeof H
in a distributional sense. Of course, we have used the notation
∂wH/∂x, to distinguish this limit (or generalized function)
from the usual partial derivative ofH, which is∂H/∂x every
time thatH is interpreted as an ordinary function (H = h).

Proposition 1 The functiong(x̂) = eik0r/r, where r =
||x̂− x̂0|| > 0 andx̂0 is a constant position, satisfies

∇g(x̂) = eik0r

(
ik0r − 1

r3

)
(x̂− x̂0). (A4)

Moreover, such function satisfies the Helmholtz equation
(∇2 + k2

0)g(x̂) = 0 for all x̂ 6= x̂0.

Proposition 2 Let us consider the variableŝx = (x, y, z),
ŷ = (u, v, w), and the operator∇ŷ := (∂/∂u, ∂/∂v, ∂/∂w).
Thus, for any vectorial field of the formH(r)(x̂ − ŷ), with
r = ||x̂ − ŷ|| andH(r) as a smooth function for allr > 0,
we have that

∇ŷ ·H(r)(x̂− ŷ) = −∇ ·H(r)(x̂− ŷ). (A5)

In particular, functiongŷ(x̂) = eik0||x̂−ŷ||/||x̂ − ŷ|| satis-
fies that∇gŷ(x̂) = eik0r[(ik0r − 1)/r3](x̂ − ŷ), as a direct
consequence of Proposition 1 (whenx̂0 = ŷ). Therefore,

∇ŷ · ∇gŷ(x̂) = −∇ · ∇gŷ(x̂), (A6)

for x̂ 6= ŷ.

The last two propositions can be demonstrated by a care-
ful calculation of partial derivatives and an adequate use of
the chain rule.
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